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An analysis of partial-structure-factor information on molecular liquids is described which uses the
spherical harmonic expansion of the site-site structure factors to extract an estimate of the orientational
pair-correlation function between molecules. Recently published neutron-diffraction data on the site-site
partials in liquid hydrogen iodide at 210 K are used as the input data to this technique. The results,
which are presented as a map of the orientational pair-correlation function, g(r,®,,»,), show the oc-
currence of pronounced relative orientational correlations between molecules at this temperature, even
though the same orientations are apparently only weakly correlated with the molecular center of mass.
The same spherical harmonic expansion procedure can be applied to a number of other molecular

liquids where diffraction data are available.

PACS number(s): 61.25.Em, 61.12.Ex, 61.20.Ja

I. INTRODUCTION

The hydrogen halides (HF, HCI], HBr, and HI) present
an important series of liquids because, apart from their
widespread use as acids, the molecules demonstrate an in-
teresting trend in the nature of their fundamental interac-
tions. While the repulsive hard-core interactions due to
electronic overlap are expected to be nearly spherically
isotropic throughout the series, the anisotropic attrac-
tions which arise from multipolar and polarization forces
change monotonically down the series. Table I lists the
dipole moment, quadrupole moment, and polarizability
of these molecules (relative to the values for hydrogen
fluoride), and it can be seen that while the dipole moment
decreases, the quadrupole moment and molecular polari-
zability increase steadily with increasing molecular
weight. It should be borne in mind [1] that dipolar forces
tend to align the axes of linear molecules either parallel
or antiparallel to each other, whereas quadrupolar forces
prefer the axes to be perpendicular to one another, the
so-called T configuration. The actual configuration found
in any particular liquid will depend on the balance be-
tween these forces, which work in addition to the elec-
tronic overlap and van der Waals attractive forces found
in simpler molecules, and the trend in the size of the mul-
tipole moments for hydrogen halide molecules means that
they are ideally suited to study the role of multipolar
forces in organizing the relative orientation of neighbor-
ing molecules in a real liquid.

Traditionally, extracting information on orientational
correlations between molecules is difficult because all
measurable quantities are averaged over the orientations
of both molecules. Some limited information is available
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from spectroscopic techniques, but this is averaged over a
range of intermolecular spacings as well. With neutrons
it is possible to label the hydrogen atoms independently
from the halogen atom and so pick out three sets of
correlations:  hydrogen-hydrogen (HH), hydrogen-
halogen (HX), and halogen-halogen (XX). These three
sets of correlations still cannot on their own provide com-
plete information on orientational correlations, but, as
will be seen below, when combined with modern image
reconstruction techniques can give a remarkably detailed
view of the nature of orientational correlations. A pro-
gram of diffraction experiments on the hydrogen halide
liquids, which exploits hydrogen isotope substitution, is
underway on the SANDALS diffractometer at the ISIS
pulsed neutron source, and the results from the first of
these experiments, on hydrogen iodide, have recently
been published [2].

The structure factors that were obtained in the SAN-
DALS experiment are shown in Fig. 1. It will be seen

TABLE 1. Values of the dipole moment, quadrupole mo-
ment, and polarizability of the hydrogen halide molecules, rela-
tive to the values for hydrogen fluoride. The quadrupole mo-
ment and polarizability values are approximate as different mea-
surements and calculations do not always agree [1].

Dipole  Quadrupole
Molecule moment moment Polarizability
Hydrogen fluoride 1.0 1.0 1.0
Hydrogen chloride 0.6 1.6 3.1
Hydrogen Bromide 0.5 1.8 4.4
Hydrogen Iodide 0.3 2.5 6.6
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FIG. 1. Partial structure factors for liquid hydrogen iodide at
253 K. The dots show the data measured on SANDALS while
the continuous line shows the fit assuming an isotropic orienta-
tional correlation function.

that the iodine-iodine structure factor has all the signa-
tures of a simple liquid structure factor, that is a pro-
nounced first peak at Q =1.67 A~ ! followed by a series
of decaying oscillations with peaks at roughly integer
multiple values of the first peak Q value. The hydrogen-
iodine structure factor shows a similar series of oscilla-
tions but these are much weaker in amplitude. However,
for the hydrogen-hydrogen structure factor, the main
peak is at a larger Q value and there is no sign of the os-
cillations.

In order to gauge some idea of the implications of these
results it is an excellent approximation to regard the
iodine as at the center of mass of the hydrogen iodide
molecule [2]. Therefore, the iodine-iodine partial struc-
ture factor and correlation function can be assumed to
represent the corresponding molecular centers structure
factor and correlation function, respectively. In that case
the hydrogen-iodine structure factor is sensitive to corre-
lations between the center of mass of one molecule and
the orientation of neighboring molecules, while the
hydrogen-hydrogen structure factor is sensitive primarily
to relative orientations of neighboring molecules.

If the hydrogen atom were randomly distributed over
the surface of a sphere with the iodine at the center then
the hydrogen-iodine and hydrogen-hydrogen partial
structure factors can be calculated directly from the
iodine-iodine structure factor simply by multiplying by
the spherical form factor for each hydrogen atom. Such
a calculation is shown as the continuous line in Fig. 1 and
it is immediately clear that while the fit to the HI struc-
ture factor is quite good, it is definitely not adequate for
the HH function because it predicts the main peak posi-
tion in the wrong place. Therefore even at this simple
level of analysis it appears that while there is only weak
correlation between the center of mass of one molecule
and the orientation of a neighboring molecule, the relative
orientational correlation between neighboring molecules
cannot be spherically isotropic.
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This point is reinforced by looking at the site-site pair-
correlation functions for the data of Fig. 1 (see Fig. 2). It
can be seen that the average nearest-neighbor hydrogen-
hydrogen distance is markedly shorter than that for
iodine-iodine; they would nearly coincide if the molecules
were oriented isotropically with respect to one another.
Given that these diffraction data and the associated
correlation functions indicate relative orientational corre-
lations between molecules it becomes an important and
interesting question to determine whether any estimate of
the relative molecular orientational correlations can be
made; if so then the information derivable from a
diffraction experiment is considerably greater compared
to that obtained by simply calculating the site-site corre-
lation functions and comparing with a theoretical or
computer model.

One possible way of investigating these orientational
correlations is via the reverse Monte Carlo (RMC) tech-
nique [3], i.e., a Monte Carlo simulation in which the dis-
tributions of molecules are generated whose structure fac-
tors correspond to those measured. There are no inter-
molecular potentials in such a simulation, only the
diffraction data and some assumed information about the
short-range potential to prevent atomic and molecular
overlap. Starting from an arbitrary distribution, the mol-
ecules in the simulation are rotated and translated in ran-
dom steps until the calculated site-site structure factors
for the ensemble of molecules agree with the measured
data. The nature of the orientational correlations can
then be determined from the coordinates of the simulated
molecules, but it would be necessary to perform a large
number of moves to obtain a convergent ensemble aver-
age. The principle strength of the RMC procedure is
that it ensures the positivity of both pair-correlation
function g(r) and structure factor S(Q), something
which is difficult to achieve by traditional approaches us-
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FIG. 2. Partial pair-correlation functions for hydrogen-
hydrogen (HH) and iodine-iodine (II) pairs as determined from
the data of Fig. 1. The HH nearest-neighbor distance is notice-
ably shorter than the corresponding II distance, indicating that
the relative orientations of neighboring molecules are correlat-
ed.
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ing direct Fourier transform of the measured datd. It
also allows one to apply known physical constraints on
the distribution functions, such as a realistic distance of
minimum approach.

The approach described here, however, takes a
different tack. It is well known [1] that the site-site par-
tial structure factors can be expanded as series in spheri-
cal harmonic coefficients H(/,/,/;Q), which in turn are
related by an inverse Hankel transform to the real-space
expansion coefficients A (l,/,1;r) of the orientational
pair-correlation function. Direct inversion of the partial
structure factors to the spherical harmonic coefficients is
not possible because the latter are heavily underdeter-
mined. However, by requiring a minimum amount of in-
formation compatible with the measured data (or in other
words maximize the entropy in the coefficients), it is pos-
sible to obtain solutions for the radial dependence of the
harmonic coefficients A(l,/,I;7) and so make estimates
for the orientational pair-correlation function A (r,®,®,).
In this way a three-dimensional picture of the relative
orientations of neighboring molecules can be estimated.

The method is generally applicable to all rigid molecu-
lar units, but gets complicated if parts of molecules are
free to rotate about a particular molecular bond. There
has been a previous attempt to derive a few of the spheri-
cal harmonic coefficients for liquid acetonitrile [4], but no
reconstruction of A(r,w;,w,) was possible. The results
given here are for diatomic molecules and represent a
powerful new method of obtaining fundamental informa-
tion from diffraction experiments on the nature of orien-
tational correlations in molecular fluids.

The paper is organized as follows. The underlying
theoretical expressions are defined in Sec. II. The max-
imum entropy method (ME) used in this work follows a
nonstandard prescription (called MIN; see Sec. III) which
has been referred to in a previous article [5]. However,

FIG. 3. Coordinate system used to define the angular pair-
correlation function. Molecule 1 is at the origin and subtends
an orientation w; (=6,¢,) with the laboratory coordinate
frame. Molecule 2 subtends an orientation w, with the same
coordinate system, and the vector r which joins their center of
mass subtends a third angle w with these same axes. Although
in principle the angular correlation function depends on seven
variables symmetry restrictions for linear molecules reduce the
number of independent variables to four (r, 6, 6,, and ¢,).
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because this approach is an essential part of the present
analysis, it is described in some detail here in Sec. III.
The application of the MIN technique to the spherical
harmonic problem is described in Sec. IV. The results of
applying the analysis to the liquid hydrogen iodide data
are shown in Sec. V, which is followed by a general dis-
cussion and conclusions.

II. SPHERICAL HARMONIC EXPANSION
OF THE SITE-SITE PARTIAL
STRUCTURE FACTORS

A comprehensive account of the expansion of the
orientational pair-correlation function in terms of spheri-
cal harmonic coefficients is given by Gray and Gubbins
[1]. The notation and phase conventions given there are
adopted here. For linear molecules the formulas are
simplified. The angular pair-correlation function is ex-
panded as the product of three spherical harmonics, one
for the orientation of molecule 1, w,, one for the orienta-
tion of molecule 2, w,, and one for the orientation of the
vector going from 1 to 2, o (see Fig. 3),

h(r,0,0,)= 3, > h(l1,1;r)

Il,lz,lml,mz,m
XC(ll,l;mym,m)
XYllm,(wl)lemz(mz)
XY (o), (1)

where C(l,l,l;mym,m) is the Clebsch-Gordon
coefficient. In principle h(r,»,,,) is a function of seven
variables, but in practice only four of these are indepen-
dent. Without loss of generality molecule 1 can be held
fixed at the origin with its axis pointing along the z axis,
so that (6,¢,)=(0,0) if the angular correlation function
is to be mapped out. Thus when summing the series in
Eq. (1) we set m; =0, which means, by virtue of the selec-
tion rules on the Clebsch-Gordon -coefficients, that
m,=m.

In reciprocal space the site-site partial structure factors
have an exact definition in terms of Hankel transforms of
the spherical harmonic coefficients,

HaB(Q): 2f(lllzl)jll(Qda)jlz(Qdﬂ)
11,1

XY (01)YF , (@3) )
where
H(lllzl;Q)=47Tpf0wr2h(lllzl;r)jI(Qr)dr , 3)

Jji(x) is the spherical Bessel function of order /, w}, is the
orientation of atom «a with respect to the axes of molecule
1, d, is its distance from the molecular center, p is the
molecular number density, and

172

i3]‘ +,+1 ] 21+1

S Lh= 47

4




47 RECONSTRUCTION OF THE ORIENTATIONAL PAIR-. .. 2601

In practice, because of the requirement from the
Clebsch-Gordon coefficients that /; +1, +1= even, we see
that
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so, because w;, and w,s are either zero or m, all the
coefficients H(l,1,1;Q) are real.

Equation (2) shows why it is in principle possible to ex-
tract information on the orientational correlation func-
tion from the site-site structure factors: for hydrogen
iodide d; =0 while dy; =1.6 A. Therefore for Hy(Q), the
spherical Bessel functions J1,(Qq ) and j,z(Qd p) are zero

unless /,/,=0. Therefore the II structure factor can only
yield the centers correlation H(000;Q).

On the other hand, for the iodine-hydrogen structure
factor, only d,, =0, so the terms (000), (011), (022), etc.,
will appear in the summation. Finally, for the HH struc-
ture factor, since both d,, and d,; are greater than zero,
all the terms contribute. The requirement that a single
set of coefficients A (/,/,/;Q) must satisfy all three da-
tasets (HH, HI, II) according to Eq. (2), already is a
strong constraint on their values.

III. THE MINIMUM NOISE (MIN)
RECONSTRUCTION METHOD

The aim of this approach is to restrain all possible solu-
tions to an inverse problem to be as smooth as possible,
and although it is very similar in concept it is to be dis-
tinguished from the traditional maximum entropy ap-
proach which requires the solution to be as uniform as
possible. The degree of smoothness is measured by the
square of the second derivative of the function being es-
timated. A preliminary account of this method and the
reasons why conventional maximum entropy methods fail
in this instance have been given in a previous article [5].

The object of the minimum noise reconstruction
method is to find solutions that minimize the quality fac-
tor Q s where

Qr=x*+AS (6)

and
X 22—2-* . (7)

M, represents an estimate of the ith data point D; and o,
is the statistical measuring uncertainty of this point. The
estimate M, is derived from a trial distribution N; via the

transform matrix T;;

M;=3T;N; . (8)
J

In Eq. (6) S is a measure of the noise in the distribution
and is given formally by

S=35,, ©)
J

where

A}/R; —1R;<Aj<4R;

Si=lia;l —1R;>A;> 1R, (10)
and where

Ry = 3Ny =Nyl (1

LN (12)
and

The weight A controls the extent to which the distribu-
tion N f is forced to be smooth, so it chosen to be as large
as possible consistent with the requirement of obtaining a
satisfactory value of y2. The distribution P; can be re-
garded as a “prior” distribution which is always smooth-
er than the distribution from which it was derived. Thus
by minimizing S the distribution N; is the smoothest pos-
sible. Distribution R; is a normalizing function whose
role will become clearer below.

Although apparently simple in form it is not immedi-
ately obvious that the noise function defined by Eq. (9)
(which differs only in detail from that proposed originally
[5] has two unique characteristics which render it rather
powerful. To understand this it will be appreciated that
in order to minimize the quality factor @, it is necessary
to calculate (3Q,/3dN;) at each stage of the refinement
procedure. Now

30,
3N,

2D, —M,)
aN;

2 ij
i o

+A . (14)

Thus (3S;/3N;) acts as a “‘restoring force” on the N; to
stop them from becoming too noisy. With the definitions
given above it is easy to see that

as. 2A;/R;, ~—%Rj<Aj<%Rj
a_ij =141, A;>1R; (15)
-1, —%Rj>Aj.

Figure 4(a) shows the value of S;/R; as a function of
A /R, while Fig. 4(b) shows the derivative (or restoring
force), Eq. (15). Note that (asj /aN,.) is dimensionless: it
depends only on the relative values of N;_,, N;, and
N, ,, not on their absolute values. Therefore the restor-

injg force has the same magnitude irrespective of the or-
der of magnitude of the N;. At the same time once a
clear peak or valley has formed (—4R;>A;>1R;), the
magnitude of the restoring force saturates and becomes
independent of the height of the peak or valley, respec-
tively, i.e., this form of constraint makes no prejudgment
of how high the peak should be. Traditional ME tech-
niques, on the other hand, place a greater restoring force
the greater the N; deviate from the prior P; and therefore
attempt to make large peaks smaller, while leaving small
peaks unaffected. The minimum noise approach treats all
peaks equally, irrespective of their magnitude: the peak
magnitude is controlled only by the requirement of fitting
the measured data. Therefore it is equally likely that
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FIG. 4. Variation of (a) the noise function [Eq. (10)] and (b)
its derivative [Eq. (15)] with respect to the deviation of the jth
point in a distribution from its neighbors j —1 and j +1. Note
that the derivative saturates if the jth point goes outside the
range defined by j —1 and j+1.

small peaks or large peaks which are artifacts of the
measuring uncertainties will be removed or reduced in
amplitude in the estimated N;. As a result the MIN
reconstruction is extremely reliable.

The quality factor is minimized in this work by a series
of iterations, which involve small steps in the values of
J

S, 1,1)~ 1
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the N;. The direction and size of the steps is driven by
(3Q; /0N;), but a stochastic component is added to each
step to avoid false minima and to ensure that the N, sam-

J
ple a range of distributions consistent with the data.

IV. APPLICATION TO SPHERICAL
HARMONIC ANALYSIS

The analysis of the preceding section was written for a
single distribution function N;. For the spherical har-
monic analysis described in Sec. II, however, it is neces-
sary to set up a series of such distributions in parallel,
each one corresponding to a particular set of values of
(1,1,1). Each member of this series will have its own
transform matrix from r space to Q space, T,»(j"‘ﬁ)(lllzl ).
The elements of this matrix are given by the coefficients
outside the 4 (/,1,/;r) in Eq. (2),

T/#B(1,1,1)=f(1,1,1)C(1,1,1;000)
Xj1,(Qid )j1,(Qidg)ji (Qyr;) (16)

Similarly each member of the series will have its own
noise value, S(I,/,1) and the total noise in the ensemble is
given by

S= 3w, ;S5 . (17)
1,1,

with w; ;; a weighting function to be determined.

There are at present two criteria that can be used to
determine the magnitude of the weights Wy, 1,1+ In the
first case the weights are chosen so that the individual
noise terms S(/,/,]) are inversely proportional to the
average magnitude of the transform matrix, and to

- the weighting factor that comes from the spher-

ical harmonics and
VL +1D2L+1)(21+1).
(1,1,

Hankel transform, i.e.,
For a particular set of

VL +DRL+ADQI+) S TP 1)

i,j,a,B

In this way values of N;(/,I,/) which affect x? strongly
are allowed to have more structure. Conversely values
which affect it weakly on average are prevented from de-
veloping undue structure.

A further refinement in the values of wy 1,1 can be

achieved by the requirement that ideally the calculated
orientational correlation function should be non-negative
over all space. This can be difficult to achieve in practice
at short distances with a finite number of terms [1], be-
cause the short-range correlations induced by hard-core
potentials are very pronounced, even when they are weak

at longer distances. However, the problem can be allevi-
ated as much as possible by increasing the noise weight-
ing on those (I,,1) coefficients which cause the largest
negative excursions. This additional adjustment to the
weights is made at regular intervals through the
refinement procedure.

The methods of assigning weights described here are to
some extent arbitrary, and it is quite possible that alter-
native schemes could be adopted, based perhaps on a
sum-rule constraint on the N;(/;/,/). The constraints
used here are consistent with the primary purpose of al-
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lowing only sufficient structure or noise in the recon-
structed correlation functions as is needed to reproduce
the trends in the measured data.

V. RESULTS

The data shown in Fig. 1 were subjected to the spheri-
cal harmonic refinement described in the preceding sec-
tions, using a total of 27 distinct coefficients (up to a max-
imum / value of 4). The actual assignments of quantum
numbers are listed in Table II. Some of the possible
coefficients include pairs of coefficients which are identi-
cal or of opposite sign only due to the symmetry proper-
ties of the coefficients themselves and the associated
Clebsch-Gordon coefficients [1]. Only one of such pairs
is tabulated. A selection of the calculated radial depen-
dence for some of the (/,/,/) values is shown in Fig. 5. It
is clear that the (000) term has by far the most structure
and confirms that the predominant feature of hydrogen
iodide liquid is the pronounced hard-core structure that
has already been described [2]. It will also be noted that
those which affect the HI correlation [(101) and (202)]
have smaller amplitude than (110) and (112) which affect
only the HH correlation.

Further information on these correlations can be ob-
tained by plotting contour maps of

g(r,o, ) =h(r,0;,w0,)+1]

for selected values of the direction of the radius vector w.

TABLE II. Angular momentum quantum numbers for the
spherical harmonic expansion used to generate Fig. 6.

No. of coefficient [, value [, value [ value
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FIG. 5. The fist five coefficients (see Table II) in the spherical
harmonic expansion of the partial structure factors of liquid hy-
drogen iodide. Note that the centers correlation 0,0,0 dom-
inates the distribution, and that those terms which generate the
HI correlation, i.e., 1,0,1 and 2,0,2, are noticeably smaller than
the 1,1,0 and 1,1,2 terms which affect only the HH correlation.

For this purpose molecule 1 is held at the origin as de-
scribed in Sec. II, Fig. 3, while g(r,0,w,) is shown as a
function of r and 6,, with ¢,=0 or 7. These maps are
shown in Fig. 6 for a variety of angles of the radius vector
between w=(6,¢)=(0,0) and (,0), respectively. The
dark areas on these maps correspond to regions of high
intensity in g(r,0,®,), and it will be appreciated that the
reconstructed orientational correlation function reveals
considerable detail about the way the liquid is organized.
In particular, it can be seen that in the polar regions of a
given molecule, the adjacent molecules tend to align their
dipoles either parallel or antiparallel to the molecule at
the origin, but there is a broad range of angles that the
molecules can adopt. At other positions the darkest spot
gradually moves around in a pattern which bears some
resemblance to the distribution of magnetic dipoles
around the poles of a permanent magnet.

In the equatorial plane the molecules are apparently
quite disordered but have a preference for their dipoles to
point towards the molecule at the origin. Due to the in-
tensity level scheme it will not be apparent from Fig. 6,
but a detailed examination of these correlation functions
shows that some orientational correlations do occur in
the second neighbor shell of molecules at »r=9 A, al-
though they are clearly much weaker in that region.

The fit to the original diffraction data obtained in this
spherical harmonic simulation is shown in Fig. 7: it can
be seen that the simulated orientational correlation func-
tion provides a good fit to the data, and so confirms that
at the very least the solution obtained is a possible recon-
struction which agrees with the data. What remains to
be done now is to discuss, to the extent possible, whether
there might be other, radically different, solutions which
would also agree with the data.

VI. DISCUSSION

The results of the spherical harmonic reconstruction
technique described here represent a major alternative
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approach to extracting information on orientational
correlations from diffraction data which apparently has
not been attempted before. It has been frequently point-
ed out [1] that the site-site pair-correlation functions
determined by neutron and x-ray diffraction contain less
information than the complete orientational pair-
correlation functions. With no additional constraints
other than the measured data this is formally correct:
there are probably a very wide range of solutions for
g(r,0,,w,) which can be made consistent with the data.
However, it is not unreasonable to ask what is the least
amount of structure in this function that is compatible
with the measured data? After all the basis for much of

Above  2.50
2.00 - 2.50
1.50 - 2.00
1.00 — 1.50

Below  1.00

FIG. 6 Density maps of the angular pair-correlation function
for a range of @ values. Each map is plotted in a 20X20 A
square. The value of 6 corresponds approximately to the angle
each map makes with the z-axis of the coordinate system shown,
and the molecule at the origin is held fixed with its hydrogen
pointing along the z axis. Dark regions correspond to areas of
enhanced density. For clarity only values of the correlation
function greater than unity are shown. In each map the pair-
correlation function is shown as a function of the distance of
molecule 2 from molecule 1 (represented as the central biack
dot): angular variation of the intensity in these maps corre-
sponds to molecule 2 pointing in different directions relative to
molecule 1.
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FIG. 7. Fit (line) to the original diffraction data (dots), using
the spherical harmonic coefficients. It can be seen that an excel-
lent fit is obtained for all three partial structure factors.

our understanding of the statistics of physical processes is
that at equilibrium the information content is held to a
minimum. The use of the minimum noise procedure
gives a viable solution to this problem by obtaining a set
of spherical harmonic coefficients which have the least
amount of structure while obtaining agreement with the
data.

As a further check that the solution given in Fig. 6
does indeed give the correct structure factors, we have
used the reconstructed orientational correlation function
to estimate gy (7) directly, by numerical integration (in-
stead of via the spherical harmonic expansion of the par-
tial structure factor). The results are shown in Fig. 8 and
show generally good agreement with direct Fourier
analysis. The first peak is seen to shift substantially to
lower r values as was seen in the direct transform of the
partials, although the shift is not quite as marked as in
the direct transform. This disagreement is believed to be
due to there being insufficient coefficients in the expan-
sion in the low r, hard-core region, where as we have al-
ready described it is difficult to ensure the simulated
orientational correlation function is precisely non-
negative. Memory limitations on the transform matrix
equation (16) prevented us from using more than 27
coefficients in this work, but it would be perfectly feasible
to increase this number significantly in the short-range
region by using higher-order coefficients over only a lim-
ited range of radius values. The higher-order coefficients
are only needed at short distances, but it will be necessary
first to determine how the range of a coefficient depends
on the values of (/;1,1).

In the present work the use of the noise constraint, Eq.
(10), plus the associated weighting factors, is highly res-
trictive and does not allow a very wide range of solutions.
In the initial development of the method the weights
were set to uniform, which resulted in some differences in
the reconstructed distributions, although the basic
features of Fig. 6 were still observed. However, those dis-
tributions also had larger regions where g(r,w,®,) went
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gHH(r)

FIG. 8. The reconstructed HH pair-correlation function ob-
tained by integrating the reconstructed pair-correlation function
directly (dots) compared to the pair correlation obtained by
direct Fourier transform of the diffraction data. Some
mismatch is seen in the low r region, probably due to an
insufficient number of coefficients being used in that region, but
the general trend is correct: the first peak is shifted to
significantly smaller r values compared to the main peak in the
center pair-correlation function. This small » discrepancy is not
nearly so apparent in the fit to the structure data, Fig. 7.

negative, so on that basis cannot be regarded as reliable.
It is also possible that use of a constraining function
different to the noise function used here (such as the trad-

itional entropy constraint) would result in a different -

reconstruction. However, it is our experience that the
noise function equation (6) is extremely robust in prob-
lems of linear inversion, whereas the traditional ME tech-
nique can give spurious structure in those situations [5].
It is worth mentioning two other aspects of the present
work, which justifies further development of the method.
First, the spherical harmonic approach is ideally suited to
incorporating molecular symmetry into the problem:
most molecules have several symmetries which act as a
further constraint on possible solutions. The effect of
symmetry is to limit the choice of (/,m) values that can
be accessed. Therefore limiting the choice of solutions to
only those that are allowed from symmetry arguments is
likely to improve confidence in the reconstruction.
Second, it also should be borne in mind that the spheri-
cal harmonic expansion is a relatively compact way of
describing a function with a large number of degrees of
freedom; to actually digitize the orientational correlation
function in the detail shown in Fig. 6 would require an

enormous amount of computer memory: the present 27
coefficients occupy about 27 X400 words of memory.

To summarize we feel that a full discussion of the
uniqueness of the solution will require more detailed
analysis than is possible in this preliminary account of
the method. However, we have tried different weighting
schemes and although this does cause some differences in
the detail of the maps of the orientational correlations,
the general picture is unchanged. The indications to date
are that it is quite robust, given the requirement of the
least amount of structure combined with positivity of the
reconstructed correlation function.

The present approach is equally applicable to many
equivalent problems in the fluid or solid state which in-
volve determination of the relative orientations between
nearly rigid molecular units. The underlying equations of
the spherical harmonic expansion are formally exact, but
it would clearly be useful to test our predictions against a
known result from a computer simulation. We hope to
report on such a test in the future.

VII. CONCLUSION

The spherical harmonic expansion of the site-site par-
tial structure factors for a molecular fluid have been used
to derive an estimate of the orientational pair-correlation
function for liquid hydrogen iodide. The input data to
this calculation are the HH, HI, and II structure factors
measured by neutron diffraction. The results indicate
preferred relative orientations of the nearest-neighbor
molecules with respect to a molecule at the origin.
Orientational correlations are also weakly present in the
second-neighbor shell. The power of the method is that
once the spherical harmonic coefficients are refined the
orientational correlation function can be calculated for
an arbitrary choice of angles and distances between mole-
cules and is not limited to a specific set of coordinates. It
also has the advantage that molecular symmetry can be
built naturally into the correlations, by appropriate
choice of (I,m) values.

A number of questions remain to be addressed, partic-
ularly that of uniqueness, and the highest order of (/,/,/)
that is needed to ensure positivity of the correlation func-
tion at all radius values. The present preliminary results
already demonstrate the remarkably detailed information
on orientational correlations that it is possible to obtain
from diffraction data by application of a rather simple
constraint on possible solutions. We hope to report on
further applications of this method to other hydrogen
halide liquids and to other liquids such as water, and to
address the question of uniqueness in the future.
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